Dalle applicazioni alla teoria: le disposizioni
Allo scopo di fornire delle applicazioni relative al concetto di disposizione, presentiamo all'utente un esempio concreto di applicazione di tale argomento nel contesto di Teoria dei giochi.In particolare, riproporremo all'utente lo stesso gioco di "prestigio" (a meno di qualche non trascurabile dettaglio) presentato nel caso delle permutazioni e vedremo come esso può essere altresì affrontato utilizzando la nozione di disposizione.
L'utente immagini di assistere allo svolgersi di un gioco cooperativo in cui gli attori siano essenzialmente tre: il Mago, l'Assistente ed il Pubblico.
Da un mazzo di 52 carte, disposte secondo un ordine concordato dal mago e dall'assistente, il pubblico estrae 5 carte a caso le mescola e le consegna all'assistente, il quale le guarda, le rimescola e ne consegna una al pubblico; con le rimanenti 4 l'assistente forma due coppie che consegna al mago in due momenti differenti; ossia egli consegna la prima coppia, il mago le valuta le restituisce all'assistente, il quale, solo dopo averle ricevute, gli consegnerà la seconda coppia.
A questo punto il mago, guardando le 2 differenti coppie di carte, comunica a voce alta senza incertezza alcuna la carta posseduta dal pubblico.
A conclusione del gioco ci chiediamo se si tratta di pura illusione oppure se effettivamente è possibile individuare un trucco intelligente che si cela dietro questo, apparentemente, semplice gioco. Lo scopo della nostra indagine sarà rendere il nostro utente un mago esperto!!
Procediamo per ordine, innanzitutto estraendo cinque carte su 52 (di 4 semi diversi, quindi 13 per seme); come già detto nel capitolo dedicato alle Permutazioni, almeno due carte saranno dello stesso seme; cosideriamo l'ipotesi in cui non più di due carte estratte abbiano lo stesso seme; ebbene, l'assistente consegna al pubblico la più piccola tra le due carte con il medesimo seme.
A questo punto l'assistente ordina la prima coppia di carte da consegnare al mago, in modo tale che la prima delle due carte sia la "gemella" (stesso seme) della carta consegnata al pubblico; così facendo il mago, o finto mago, ottiene la prima informazione ossia il seme della carta posseduta dal pubblico. Dopo aver ottenuto tale informazione il mago restituisce la coppia di carte all'assistente, il quale deve a questo punto formare la seconda coppia da cui ci aspettiamo che il mago possa desumere anche il numero della carta posseduta dal pubblico.
Resta da comunicare al mago solo il numero tra 1 e 13 della carta nascosta. In realtà, scartando la carta gemella consegnata al mago dall'assistente, le possibili scelte sono solo 12.
Ebbene, l'assistente forma la seconda coppia di carte da consegnare al mago seguendo un ordinamento concordato, associando ad ogni possibile disposizione delle 4 carte a 2 a 2, un numero (legato alle variabili Gemella, Alto, Medio e Basso associabili al valore delle singole carte), che corrisponderà proprio al numero della carta posseduta dal pubblico.
Supponiamo, ad esempio, che alla particolare disposizione presentatagli, il mago associa il numero 5 e che dalla prima coppia egli aveva assunto che il seme fosse quello dei cuori, egli concluderà che la carta è il 5 di cuori.
Concludiamo dicendo che, per diventare un bravo mago, oltre a saper maneggiare le carte, occorre anche avere qualche infarinatura di calcolo combinatorio!!!
0 commenti :
Posta un commento