Definizione: si dice regolare unpoligono equilatero ed equiangolo. Proprietà: ogni poligono regolare è inscrittibile e circoscrittibile, e le due circonferenze hanno lo stesso centro. Definizione: si dice apotema di un poligono regolare il raggio del cerchio inscritto nel poligono. In generale in un poligono regolare con nlati di lato l e apotema a: ![]() ![]() |
Vedi anche: poligoni convessi | poligoni regolari coi numeri fissi | costruzioni geometriche dei poligoni regolari con Cabri II
LEGENDAlato : l altezza : h diagonale : d perimetro : 2p semiperimetro : p apotema : a raggio della circonferenza circoscritta : R raggio della circonferenza inscritta : r Area : A | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Altre proprietà: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Triangolo equilatero L'altezza del triangolo equilatero: ![]() | Quadrato La diagonale del quadrato noto il lato: ![]() Il lato del quadrato nota la diagonale: ![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Pentagono regolare convesso Il lato del pentagono regolare corrisponde alla sezione aurea della sua diagonale: ![]() La diagonale del pentagono regolare in funzione del lato: ![]() | Esagono regolare convesso L'esagono regolare è inscrittibile in una circonferenza il cui raggio è uguale al lato dell'esagono Decagono regolare convessoIl lato del decagono regolare convesso è uguale alla sezione aurea del raggio della circonferenza circoscritta: ![]() |
domenica 13 marzo 2016
Poligoni regolari
Pubblicato da
jonny
alle
16:29:00
Invia tramite email
Postalo sul blog
Condividi su X
Condividi su Facebook

Etichette:
Geometria del piano
,
medie
Powered by Blogger.
0 commenti :
Posta un commento